Search results for "model [neutrino]"

showing 10 items of 1203 documents

Different behavior of myeloperoxidase in two rodent amoebic liver abscess models.

2016

The protozoan Entamoeba histolytica is the etiological agent of amoebiasis, which can spread to the liver and form amoebic liver abscesses. Histological studies conducted with resistant and susceptible models of amoebic liver abscesses (ALAs) have established that neutrophils are the first cells to contact invasive amoebae at the lesion site. Myeloperoxidase is the most abundant enzyme secreted by neutrophils. It uses hydrogen peroxide secreted by the same cells to oxidize chloride ions and produce hypochlorous acid, which is the most efficient microbicidal system of neutrophils. In a previous report, our group demonstrated that myeloperoxidase presents amoebicidal activity in vitro. The ai…

0301 basic medicineMalePathologyNeutrophilslcsh:MedicineGene ExpressionPathology and Laboratory MedicineWhite Blood Cells0302 clinical medicineAnimal CellsCricetinaeMedicine and Health SciencesAmoebaslcsh:ScienceImmune ResponseDisease ResistanceMammalsProtozoansMice Inbred BALB CMultidisciplinaryAmoebic liver abscessbiologyChemistryAnimal ModelsLiverExperimental Organism SystemsMyeloperoxidaseHost-Pathogen InteractionsVertebratesLiver Abscess AmebicHamstersmedicine.symptomCellular TypesResearch Articlemedicine.medical_specialtyImmune CellsImmunologyMouse ModelsResearch and Analysis MethodsRodentsMicrobiologyLesionEntamoeba Histolytica03 medical and health sciencesEntamoeba histolyticaModel OrganismsSigns and SymptomsIn vivoDiagnostic MedicineParasite GroupsmedicineGeneticsAnimalsAmoebiasisTrophozoitesPeroxidaseInflammationBlood Cellslcsh:ROrganismsBiology and Life SciencesCell Biologybiology.organism_classificationmedicine.diseaseIn vitroParasitic ProtozoansDisease Models Animal030104 developmental biologyAmniotesbiology.proteinlcsh:QParasitologyLeukocyte ElastaseApicomplexa030215 immunologyLiver abscessPloS one
researchProduct

High Throughput Sequencing Identifies Misregulated Genes in the Drosophila Polypyrimidine Tract-Binding Protein (hephaestus) Mutant Defective in Sper…

2015

The Drosophila polypyrimidine tract-binding protein (dmPTB or hephaestus) plays an important role during spermatogenesis. The heph2 mutation in this gene results in a specific defect in spermatogenesis, causing aberrant spermatid individualization and male sterility. However, the array of molecular defects in the mutant remains uncharacterized. Using an unbiased high throughput sequencing approach, we have identified transcripts that are misregulated in this mutant. Aberrant transcripts show altered expression levels, exon skipping, and alternative 5' ends. We independently verified these findings by reverse-transcription and polymerase chain reaction (RT-PCR) analysis. Our analysis shows m…

0301 basic medicineMalePhysiologyMutantGene Expressionlcsh:MedicineArtificial Gene Amplification and ExtensionPolymerase Chain ReactionBiochemistryConserved sequence0302 clinical medicineSequencing techniquesReproductive PhysiologyAnimal CellsInvertebrate GenomicsMedicine and Health SciencesDrosophila ProteinsProtein IsoformsCell Cycle and Cell Divisionlcsh:ScienceConserved SequencePhylogenyGeneticsRegulation of gene expressionMultidisciplinarybiologyChromosome BiologyDrosophila MelanogasterMessenger RNAHigh-Throughput Nucleotide SequencingRNA sequencingAnimal ModelsGenomicsSpermatidsInsectsNucleic acidsMeiosisCell ProcessesDrosophilaDrosophila melanogasterTranscription Initiation SiteCellular TypesDrosophila ProteinPolypyrimidine Tract-Binding ProteinResearch ArticleArthropodaMolecular Sequence DataReal-Time Polymerase Chain ReactionResearch and Analysis Methods03 medical and health sciencesModel OrganismsGeneticsAnimalsPolypyrimidine tract-binding proteinRNA MessengerSpermatogenesisMolecular Biology TechniquesMolecular BiologyBinding SitesBase SequenceGene Expression Profilinglcsh:ROrganismsBiology and Life SciencesCell BiologyReverse Transcriptase-Polymerase Chain Reactionbiology.organism_classificationInvertebratesExon skippingSpermGene expression profiling030104 developmental biologyGene OntologyGerm CellsGene Expression RegulationAnimal GenomicsMutationbiology.proteinRNAlcsh:QTranscriptome030217 neurology & neurosurgeryPLoS ONE
researchProduct

The neuroanatomy of Eml1 knockout mice, a model of subcortical heterotopia

2018

Symposium issue: Human Cortex Developmentidentifiant wos: 000482426800014; International audience; The cerebral cortex is a highly organized structure responsible for advanced cognitive functions. Its development relies on a series of steps including neural progenitor cell proliferation, neuronal migration, axonal outgrowth and brain wiring. Disruption of these steps leads to cortical malformations, often associated with intellectual disability and epilepsy. We have generated a new resource to shed further light on subcortical heterotopia, a malformation characterized by abnormal neuronal position. We describe here the generation and characterization of a knockout (KO) mouse model for Eml1,…

0301 basic medicineMale[SDV.MHEP.AHA] Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]heterotopiaHistology[SDV.BA] Life Sciences [q-bio]/Animal biologyClassical Lissencephalies and Subcortical Band HeterotopiasBiologyCorpus callosum03 medical and health sciences0302 clinical medicinemedicine[SDV.MHEP.AHA]Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]Animals[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Progenitor cellMolecular BiologyEcology Evolution Behavior and SystematicsMice Knockout[SDV.BA]Life Sciences [q-bio]/Animal biologyBrainHeterozygote advantageCell BiologyOriginal Articlesmouse model of developmental disordersmedicine.diseasecortical malformationsCorticogenesisDisease Models Animal030104 developmental biologymedicine.anatomical_structureHeterotopia (medicine)Cerebral cortexKnockout mouseFemale[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]AnatomyNeuroscienceMicrotubule-Associated Proteins030217 neurology & neurosurgeryDevelopmental BiologyNeuroanatomy
researchProduct

Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations.

2016

Methyl-CpG binding protein 2 (MeCP2) is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X), a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel find…

0301 basic medicineMethyl-CpG-Binding Protein 2lcsh:MedicineApoptosisBiochemistryPhosphoserine0302 clinical medicineAnimal CellsDrosophila ProteinsPost-Translational ModificationPhosphorylationlcsh:ScienceNeuronsMotor NeuronsGeneticsMultidisciplinaryCell DeathbiologyDrosophila MelanogasterAnimal ModelsInsectsFOXG1Cell ProcessesCaspasesPhosphorylationDrosophilaBiological CulturesCellular TypesDrosophila melanogasterResearch ArticleGene isoformcongenital hereditary and neonatal diseases and abnormalitiesArthropodaProtein domainMouse ModelsMotor ActivityResearch and Analysis MethodsTransfectionModels BiologicalMECP203 medical and health sciencesModel OrganismsProtein Domainsmental disordersAnimalsHumansMolecular Biology TechniquesImmunohistochemistry TechniquesMolecular BiologyTranscription factorBinding proteinlcsh:ROrganismsBiology and Life SciencesProteinsCell BiologyCell Culturesbiology.organism_classificationInvertebratesHistochemistry and Cytochemistry TechniquesHEK293 Cells030104 developmental biologyCellular NeuroscienceMutationImmunologic TechniquesMutant Proteinslcsh:Q030217 neurology & neurosurgeryNeuroscienceTranscription FactorsPLoS ONE
researchProduct

Evolving Notch polyQ tracts reveal possible solenoid interference elements.

2016

ABSTRACTPolyglutamine (polyQ) tracts in regulatory proteins are extremely polymorphic. As functional elements under selection for length, triplet repeats are prone to DNA replication slippage and indel mutations. Many polyQ tracts are also embedded within intrinsically disordered domains, which are less constrained, fast evolving, and difficult to characterize. To identify structural principles underlying polyQ tracts in disordered regulatory domains, here I analyze deep evolution of metazoan Notch polyQ tracts, which can generate alleles causing developmental and neurogenic defects. I show that Notch features polyQ tract turnover that is restricted to a discrete number of conserved “polyQ …

0301 basic medicineModels MolecularProtein Structure ComparisonProtein FoldingHuntingtinlcsh:MedicineCarboxamideAnkyrin Repeat DomainBiochemistryProtein Structure SecondaryDatabase and Informatics Methods0302 clinical medicineProtein structureMacromolecular Structure AnalysisDrosophila Proteinslcsh:ScienceGeneticsHuntingtin ProteinMultidisciplinaryReceptors NotchChemistryDrosophila MelanogasterAnimal ModelsCell biologyInsectsExperimental Organism SystemsProtein foldingDrosophilaSequence AnalysisResearch ArticleMultiple Alignment CalculationProtein StructureArthropodamedicine.drug_classBioinformaticsProtein domainSequence alignmentBiologyIntrinsically disordered proteinsResearch and Analysis MethodsTerminal loopEvolution Molecular03 medical and health sciencesModel OrganismsProtein DomainsSequence Motif AnalysisComputational TechniquesmedicineHuntingtin ProteinAnimalsIndelMolecular BiologyRepetitive Sequences Nucleic AcidModels GeneticSequence Homology Amino Acidlcsh:RDNA replicationOrganismsBiology and Life SciencesProteinsHydrogen BondingInvertebratesSplit-Decomposition MethodIntrinsically Disordered Proteins030104 developmental biologyAnkyrin repeatlcsh:QPeptidesSequence Alignment030217 neurology & neurosurgeryPLoS ONE
researchProduct

Developmental transcriptomics in Atlantic haddock: Illuminating pattern formation and organogenesis in non-model vertebrates.

2016

Gadiforms such as Atlantic haddock comprise some of the world's most economically important fisheries. Understanding the early life history of these fish is a prerequisite for predicting effects of a changing environment and increased human activities. Robust assessment of the effects of environmental impacts on the embryos of non-model vertebrates is hampered by a lack of molecular resources and detailed knowledge regarding the regulation of genes and pathways in early development. Here we used mRNA sequencing to link transcriptional changes to developmental processes in haddock, specifically, pattern formation and organogenesis. Temporal expression of key developmental genes was tightly a…

0301 basic medicineOrganogenesisved/biology.organism_classification_rank.speciesOrganogenesisBioinformaticsEyeCardiovascular SystemBone and BonesTranscriptome03 medical and health sciences0302 clinical medicinebiology.animalAnimalsRNA MessengerModel organismMolecular BiologyBody PatterningGene Librarybiologyved/biologySequence Analysis RNAGene Expression ProfilingSkullFishesVertebrateComputational BiologyGene Expression Regulation DevelopmentalCell BiologyHaddockBlastulaBlastulabiology.organism_classificationGene expression profiling030104 developmental biologyMRNA SequencingEvolutionary biologyLarvaTranscriptome030217 neurology & neurosurgeryDevelopmental BiologyDevelopmental biology
researchProduct

Evaluation of Mucociliary Clearance by Three Dimension Micro-CT-SPECT in Guinea Pig: Role of Bitter Taste Agonists

2016

Different image techniques have been used to analyze mucociliary clearance (MCC) in humans, but current small animal MCC analysis using in vivo imaging has not been well defined. Bitter taste receptor (T2R) agonists increase ciliary beat frequency (CBF) and cause bronchodilation but their effects in vivo are not well understood. This work analyzes in vivo nasal and bronchial MCC in guinea pig animals using three dimension (3D) microCT-SPECT images and evaluates the effect of T2R agonists. Intranasal macroaggreggates of albumin-Technetium 99 metastable (MAA-Tc99m) and lung nebulized Tc99m albumin nanocolloids were used to analyze the effect of T2R agonists on nasal and bronchial MCC respecti…

0301 basic medicinePathologyPhysiologyRespiratory Systemlcsh:MedicineSingle Photon Emission Computed TomographyPharmacologyBiochemistryDiagnostic RadiologyReceptors G-Protein-CoupledMathematical and Statistical Techniques0302 clinical medicineBronchodilationMedicine and Health Scienceslcsh:ScienceTomographyLungMammalsMultidisciplinaryRadiology and ImagingDrugsfood and beveragesChloroquineAnimal Modelsrespiratory systemPulmonary ImagingBody Fluidsmedicine.anatomical_structureMucociliary ClearanceVertebratesPhysical SciencesAnatomyStatistics (Mathematics)Research ArticleAgonistmedicine.medical_specialtySingle Photon Emission Computed Tomography Computed TomographyImaging TechniquesMucociliary clearancemedicine.drug_classGuinea PigsBronchiNeuroimagingResearch and Analysis MethodsRodentsGuinea pigAntimalarials03 medical and health sciencesModel OrganismsDiagnostic MedicineIn vivoAlbuminsmedicineAnimalsHumansStatistical MethodsPharmacologyAnalysis of VarianceLungbusiness.industrylcsh:ROrganismsBiology and Life SciencesProteinsX-Ray MicrotomographyMucus030104 developmental biology030228 respiratory systemAmniotesNanoparticleslcsh:QNasal administrationbusinessMathematicsEx vivoNeuroscience
researchProduct

A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae

2016

Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the…

0301 basic medicinePhysiologyATPaseAntiporterYeast and Fungal ModelsPhysical ChemistryBiochemistryIon ChannelsCation homeostasisMedicine and Health SciencesHomeostasislcsh:QH301-705.5Membrane potentialEcologybiologyChemistryOrganic CompoundsPhysicsMonosaccharidesElectrophysiologyChemistryComputational Theory and MathematicsBiochemistryModeling and SimulationPhysical SciencesThermodynamicsProtonsAlgorithmsResearch ArticleChemical ElementsSaccharomyces cerevisiaeCarbohydratesSaccharomyces cerevisiaeResearch and Analysis MethodsMembrane PotentialModels Biological03 medical and health sciencesCellular and Molecular NeuroscienceSaccharomycesModel OrganismsCationsGeneticsMolecular BiologyEcology Evolution Behavior and SystematicsIon transporterNuclear PhysicsNucleonsIonsOrganic ChemistrySodiumChemical CompoundsOrganismsFungiBiology and Life SciencesComputational BiologyBiological Transportbiology.organism_classificationYeast030104 developmental biologyGlucoseMetabolismlcsh:Biology (General)SymporterActive transportbiology.proteinBiophysicsPLoS Computational Biology
researchProduct

A conditional inducible JAK2V617F transgenic mouse model reveals myeloproliferative disease that is reversible upon switching off transgene expressio…

2019

Aberrant activation of the JAK/STAT pathway is thought to be the critical event in the pathogenesis of the chronic myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia and primary myelofibrosis. The most frequent genetic alteration in these pathologies is the activating JAK2V617F mutation, and expression of the mutant gene in mouse models was shown to cause a phenotype resembling the human diseases. Given the body of genetic evidence, it has come as a sobering finding that JAK inhibitor therapy only modestly suppresses the JAK2V617F allele burden, despite showing clear benefits in terms of reducing splenomegaly and constitutional symptoms in patients. To gain a better …

0301 basic medicinePhysiologyClone (cell biology)Mice0302 clinical medicineAnimal CellsBone MarrowImmune PhysiologyMedicine and Health SciencesBlood and Lymphatic System ProceduresTransgenesBone Marrow TransplantationRegulation of gene expressionMultidisciplinaryQRAnimal ModelsBody FluidsPhenotypesBloodExperimental Organism Systems030220 oncology & carcinogenesisMedicineAnatomyCellular TypesResearch ArticleGenetically modified mousePlateletsTransgeneScienceImmunologyMutation MissenseMice TransgenicMouse ModelsSurgical and Invasive Medical ProceduresBone Marrow CellsBiologyResearch and Analysis Methods03 medical and health sciencesModel OrganismsmedicineGeneticsAnimalsHumansAlleleProgenitor cellMyelofibrosisMolecular Biology TechniquesMolecular BiologyTransplantationMyeloproliferative DisordersBlood CellsEssential thrombocythemiaBiology and Life SciencesCell BiologyJanus Kinase 2medicine.diseaseHematopoietic Stem CellsDisease Models Animal030104 developmental biologyAmino Acid SubstitutionGene Expression RegulationImmune SystemCancer researchAnimal StudiesSpleenCloningPLoS ONE
researchProduct

Metal homeostasis regulators suppress FRDA phenotypes in a drosophila model of the disease

2016

Friedreich's ataxia (FRDA), the most commonly inherited ataxia in populations of European origin, is a neurodegenerative disorder caused by a decrease in frataxin levels. One of the hallmarks of the disease is the accumulation of iron in several tissues including the brain, and frataxin has been proposed to play a key role in iron homeostasis. We found that the levels of zinc, copper, manganese and aluminum were also increased in a Drosophila model of FRDA, and that copper and zinc chelation improve their impaired motor performance. By means of a candidate genetic screen, we identified that genes implicated in iron, zinc and copper transport and metal detoxification can restore frataxin def…

0301 basic medicinePhysiologyGene Expressionlcsh:MedicineMitochondrionmedicine.disease_causeAntioxidantsIron-Binding ProteinsMedicine and Health SciencesHomeostasislcsh:ScienceGeneticsMultidisciplinarybiologyDrosophila MelanogasterIron-binding proteinsAnimal ModelsPhenotypeMitochondria3. Good healthInsectsDNA-Binding ProteinsChemistryZincPhenotypesPhysical SciencesDrosophilaAnatomymedicine.symptomDrosophila melanogasterResearch ArticleChemical ElementsAtaxiaArthropodaIronResearch and Analysis Methods03 medical and health sciencesModel OrganismsOcular SystemmedicineGeneticsAnimalsHumansGenetikManganeselcsh:ROrganismsBiology and Life SciencesCell Biologybiology.organism_classificationInvertebratesOxidative StressDisease Models Animal030104 developmental biologyFriedreich AtaxiaFrataxinbiology.proteinEyeslcsh:QPhysiological ProcessesCarrier ProteinsHeadCopperOxidative stressAluminumTranscription FactorsGenetic screen
researchProduct